Publications

  1. Diverse neuronal activity patterns contribute to the control of distraction in the prefrontal and parietal cortex
    P. Sapountzis, A. Antoniadou G.G. Gregoriou
    PLoS Biol (2025), Jan 27;23(1):e3003008 doi: 10.1371/journal.pbio.3003008
  2. Temporally Causal Discovery Tests for Discrete Time Series and Neural Spike Trains
    Theocharous, A., Gregoriou, G.G., Sapountzis, P., Kontoyiannis, I.
    IEEE Transactions on Signal Processing, (2024), 72, pp. 1333–1347
  3. A response to claims of emergent intelligence and sentience in a dish
    F. Balci, S. Ben Hamed, T. Boraud, S. Bouret, T. Brochier, C. Brun, J.Y. Cohen, E. Coutureau, M. Deffains, V. Doyère, G.G. Gregoriou, J.A. Heimel, B.E. Kilavik, D. Lee, E.C. Leuthardt, Z.F. Mainen, M. Mathis, I.E. Monosov, J. Naudé, A.L. Orsborn, C. Padoa-Schioppa, E. Procyk, B. Sabatini, J. Sallet, C. Sandi, J.D. Schall, A. Soltani, K. Svoboda, C.RE Wilson, J. Zimmermann
    Neuron (2023), 11 (5), 604-605 doi: 10.1016/j.neuron.2023.02.009
  4. Dynamic and stable population coding of attentional instructions coexist in the prefrontal cortex
    P. Sapountzis*, S. Paneri*, S. Papadopoulos and G.G. Gregoriou (*equal contribution)
    Proc Natl Acad Sci, U.S.A. (2022), 119(40):e2202564119, doi: 10.1073/pnas.2202564119, Epub 2022 Sep 26
  5. Distinct roles of prefrontal and parietal areas in the encoding of attentional priority.
    P. Sapountzis, S. Paneri and G.G. Gregoriou
    Proc Natl Acad Sci, U.S.A. (2018), 115(37):E8755-E8764, doi: 10.1073/pnas.1804643115, Epub 2018 Aug 28
  6. Neural signatures of attention: insights from decoding population activity patterns.
    P. Sapountzis and G.G. Gregoriou
    Front Biosci, Landmark Edition (2018), 23:221-246, doi: 10.2741/4588, Invited Review
  7. Top-Down Control of Visual Attention by the Prefrontal Cortex. Functional Specialization and Long-range Interactions.
    S. Paneri and G.G. Gregoriou
    Front Neurosci (2017), 11:545, doi: 10.3389/fnins.2017.00545, Invited Article, Special Issue Prefrontal cortex and executive functions
  8. Oscillatory synchrony as a mechanism of attentional processing.
    G.G. Gregoriou, S. Paneri*, and P. Sapountzis* (*equal contribution)
    Brain Res (2015), 1626:165-182 Invited Article, Special Issue on Predictive and Attentive Processing in Perception and Action
  9. Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4.
    G.G. Gregoriou, A.F. Rossi, L.G. Ungerleider and R. Desimone
    Nature Neurosci (2014), 17(7):1003-11
  10. Topography of visuomotor parameters in the frontal and premotor eye fields.
    H.E. Savaki, G.G. Gregoriou, S. Bakola and A.K. Moschovakis
    Cerebral Cortex (2015), 25(9): 3095-3106 (first published online May 20 2014)
  11. A procedure for testing across-condition rhythmic spike-field association change.
    K.Q. Lepage, G.G. Gregoriou, M.A. Kramer, M. Aoi, S.J. Gotts, U.T. Eden and R. Desimone
    J. Neurosci. Methods (2013), 213(1):43-62
  12. Cell-type specific synchronization of neural activity in FEF with V4 during attention.
    G.G. Gregoriou, S.J. Gotts and R. Desimone
    Neuron (2012), 72(3):581-594
  13. The place code of saccade metrics in the lateral bank of the intraparietal sulcus.
    H.E. Savaki, G.G. Gregoriou, S. Bakola, V. Raos and A.K. Moschovakis
    J. Neurosci. (2010), 30(3):1118-27
  14. Long-range neural coupling through synchronization with attention.
    G.G. Gregoriou, S.J. Gotts, H. Zhou and R. Desimone
    Prog. Brain Res. (2009), 176C:35-45
  15. High frequency long-range coupling between prefrontal and visual cortex during attention.
    G.G. Gregoriou*, S.J. Gotts*, H. Zhou and R. Desimone (*equal contribution)
    Science (2009), 324:1207-1210
  16. Saccade-related information in the superior temporal motion complex. Quantitative functional mapping in the monkey.
    S. Bakola, G.G. Gregoriou, A.K. Moschovakis, V. Raos and H.E. Savaki
    J. Neurosci. (2007), 27(9):2224-2229
  17. Functional imaging of the intraparietal cortex during saccades to visual and memorized targets.
    S. Bakola, G.G. Gregoriou, A.K. Moschovakis and H.E. Savaki
    Neuroimage (2006), 31(4):1637-1649
  18. Cortical connections of the inferior parietal cortical convexity of the macaque monkey.
    S. Rozzi, R. Calzavara, A. Belmalih, E. Borra, G.G. Gregoriou, M. Matelli and G. Luppino
    Cerebral Cortex (2006), 16(10):1389-1417
  19. Architectonic organization of the inferior parietal cortical convexity of the macaque monkey.
    G.G. Gregoriou, E. Borra, M. Matelli and G. Luppino (2006)
    J. Comp. Neurol. (2006), 496(3):422-451
  20. Frontal cortical areas of the monkey brain engaged in reaching behavior: a 14C-deoxyglucose imaging study.
    G.G. Gregoriou, G. Luppino, M. Matelli and H.E. Savaki
    Neuroimage (2005), 27(2):442-464
  21. Oculomotor areas of the primate frontal lobes: a transneuronal transport of rabies virus and [14C]-2-deoxyglucose functional imaging study.
    A.K. Moschovakis, G.G. Gregoriou, G. Ugolini, M. Doldan, W. Graf, W, Guldin, K. Hadjidimitrakis and H.E. Savaki
    J. Neurosci. (2004), 24(25):5226-5240
  22. When vision guides movement: a functional imaging study of the monkey brain.
    G.G. Gregoriou and H.E. Savaki
    Neuroimage (2003), 19(3):457-469
  23. Functional imaging of the primate superior colliculus during saccades to visual targets.
    A.K. Moschovakis, G.G. Gregoriou and H.E. Savaki
    Nature Neurosci. (2001), 4:1026-1031
  24. The intraparietal cortex: subregions involved in fixation, saccades and in the visual and somatosensory guidance of reaching.
    G.G. Gregoriou and H.E. Savaki
    J. Cereb. Blood Flow Metab. (2001), 21:671-682
  25. Metabolic activity patterns in the monkey visual cortex as revealed by spectral analysis.
    Y. Dalezios, G.G. Gregoriou and H.E. Savaki
    J. Cereb. Blood Flow Metab. (1999), 19:401-416